bienvenidos al mundo de la geometria

jueves, 2 de diciembre de 2010

video

funcion trigonometricas

Funciones Trigonométricas
Función Seno:
La función Seno se obtiene de dividir el cateto opuesto de un triángulo rectángulo, entre su hipotenusa:
Así por ejemplo, en el triángulo rectángulo siguiente:
el seno del ángulo alpha será:
Para obtener el valor de ángulo alpha, hay que sacar la función inversa del seno:
cualquier calculadora científica lo puede hacer, y generalmente hay que apretar una tecla "shift" o "2daf" que se encuentra típicamente en la esquina superior izquierda, y luego apretar la tecla "sin" (dice "sin" y no "sen" porque en inglés la función seno se escribe "sin"):
para este caso, el resultado da: 53.13010...
que es el valor en decimal que corresponde al ángulo alpha.
Función Cosecante
La función cosecante es parecida a la función seno, sólo que al revés. Esto es: en lugar de dividir el cateto opuesto entre la hipotenusa, se divide la hipotenusa entre el cateto opuesto
en principio, para obtener el valor del ángulo alpha, uno debería sacar la función inversa de la cosecante:
sin embargo, la mayoría de las calculadoras no sacan ésta función (ni siquiera la cosecante) porque suponen que el usuario sabe que es lo mismo, que sacar la función inversa del inverso del seno. O sea que en lugar de quebrarte la cabeza preguntándote "¿Cómo lo saco?" simplemente haz la siguiente sustitución:
y ya.
Gráfica de la función Seno
Si graficas la función y = sen(x) en un plano cartesiano, obtendrías la siguiente figura:
Observa que la función no pasa de 1 por arriba y de -1 por abajo. Se dice entónces que la función está "acotada" entre -1 y +1. Los valores para los que la función llega hasta +1 o -1 son los múltiplos impares de ¶ / 2 , o sea:
con n entero y mayor que cero.
La función seno(x) tiene periodo de 2¶, esto es, que cuando x es igual a 2¶, la función se vuelve a repetir tomando los valores que tomó a partir del cero.
Función Coseno:
La función Coseno se obtiene de dividir el cateto adyacente de un triángulo rectángulo, entre su hipotenusa:
Así por ejemplo, en el triángulo rectángulo siguiente:
el coseno del ángulo alpha será:
Para obtener el valor de ángulo alpha, hay que sacar la función inversa del coseno:
cualquier calculadora científica lo puede hacer, y generalmente hay que apretar una tecla "shift" o "2daf" que se encuentra típicamente en la esquina superior izquierda, y luego apretar la tecla "cos":
para este caso, el resultado da: 53.13010...
que es el valor en decimal que corresponde al ángulo alpha.
Función Secante
La función secante es parecida a la función coseno, sólo que al revés. Esto es: en lugar de dividir el cateto adyacente entre la hipotenusa, se divide la hipotenusa entre el cateto adyacente:
en principio, para obtener el valor del ángulo alpha, uno debería sacar la función inversa de la secante:
sin embargo, la mayoría de las calculadoras no sacan ésta función (ni siquiera la secante) porque suponen que el usuario sabe que es lo mismo, que sacar la función inversa del inverso del coseno. O sea que en lugar de quebrarte la cabeza preguntándote "¿Cómo lo saco?" simplemente haz la siguiente sustitución
y ya.
Gráfica de la función Coseno
Si graficas la función Coseno en un plano cartesiano, ésta se vería así:
Observa que la función se parece muchísimo a la función Seno. La diferencia está en que el coseno comienza en el +1 [o sea y(0) = +1], y el seno en el 0 [ o sea y(0) = 0]. Esto se debe a que la función coseno está desfasada medio periódo respecto de la función seno.
Igual que en la función Seno, la función coseno sólo puede tomar valores entre -1 y +1. A esto se le dice "acotada", que significa que tiene límites de los cuáles ya no pasa.
La función es periódica ( o sea que se repite su forma a lo largo del eje x) y su periodo vale 2¶ (o sea que cuando x toma el valor de 2¶, la función vuelve a tomar los valores que tomó desde el cero otra vez.
Los valores para los que la función Coseno se vuelve +1 o -1 son los múltiplos enteros de ¶, o sea:
n¶     con n cualquier entero incluyendo el cero.
Función Tangente:
La función Tangente se obtiene de dividir el cateto opuesto de un triángulo rectángulo, entre el cateto adyacente:
Así por ejemplo, en el triángulo rectángulo siguiente:
la tangente del ángulo alpha será:
Para obtener el valor de ángulo alpha, hay que sacar la función inversa de la tangente:
cualquier calculadora científica lo puede hacer, y generalmente hay que apretar una tecla "shift" o "2daf" que se encuentra típicamente en la esquina superior izquierda, y luego apretar la tecla "tan":
para este caso, el resultado da: 53.13010...
que es el valor en decimal que corresponde al ángulo alpha.
La función tangente se puede también definir a través de las funciones seno y coseno como sigue:
y el resultado es el mismitito que dividir el cateto opuesto entre el cateto adyacente.
Función Cotangente
La función cotangente es parecida a la función tangente, sólo que al revés. Esto es: en lugar de dividir el cateto opuesto entre el cateto adyacente, se divide el cateto adyacente entre el cateto opuesto
hay otras notaciones válidas para la contangente, algunos la prefieren escribir de alguna de las siguientes formas:
pero es la misma función.
En principio, para obtener el valor del ángulo alpha, uno debería sacar la función inversa de la tangente (la arcocotangente), por ejemplo, para el problema de arriba sería:
sin embargo, la mayoría de las calculadoras no sacan ésta función (ni siquiera la cotangente) porque suponen que el usuario sabe que es lo mismo, que sacar la función inversa del inverso de la tangente. O sea que en lugar de quebrarte la cabeza preguntándote "¿Cómo lo saco?" simplemente haz la siguiente sustitución:
y ya.
Gráfica de la función Tangente
Si graficaras la función y = tan (x) en un plano cartesiano, ésta se vería así:
los puntos donde la función se va a infinito se llaman "asíntotas" y en esos valores la función tangente no está definida. Esta función tiene periodo ¶ (recuerda que en radianes ¶ = 180°). Es decir que cuando la x toma los múltiplos de ¶, la función vuelve a tomar los valores que tomó desde el cero, y la función se repite así hasta infinito.
Observa que a diferencia de las funciones seno y coseno, la función tangente no está "acotada", o sea limitada en el eje de las y's, sino que puede tomar cualquier valor y no como la función seno o coseno que sólo pueden tomar valores entre el +1 y el -1.
Fórmulas e Identidades Trigonométricas
La siguiente es una lista de fórmulas trigonométricas muy útiles para resolver muchos problemas:
Fundamentales
sen(-x) = -sen(x)
cos(-x) = cos(x)
tan(-x) = -tan(x)
sen2x + cos2x = 1
1 + tan2x = sec2x
1 + cotan2x = csc2x
sen ( ¶ - x) = sen (x)
cos ( ¶ - x) = -cos (x)
tan ( ¶ - x) = -tan (x)
Suma y resta de dos ángulos en funciones trigonométricas
sen (u + v) = sen (u)cos (v) + cos(u)sen(v)
sen (u - v) = sen (u)cos (v) - cos(u)sen(v)
cos (u + v) = cos(u) cos(v) - sen(u)sen(v)
cos (u - v) = cos(u) cos(v) + sen(u)sen(v)
Fórmulas para la suma del doble del ángulo
sen(2x) = 2sen(x)cos(x)
cos(2x) = 2cos2(x) - 1
cos(2x) = cos2(x) - sen2(x)
cos(2x) = 1 - 2sen2(x)
Fórmulas para el cuadrado de la función
Fórmulas para el cuadrado de la función con la mitad del ángulo
Fórmulas para la tangente de la mitad del ángulo
Fórmulas para el producto de seno y coseno
Fórmulas para la suma y resta de senos y cosenos
Identidades entre funciones trigonométricas
Ley de los seno
Ley del Coseno
La ley de los Senos y ley del coseno se basan en éste triángulo:
Tabla de coseno y seno de los ángulos principales

TRIGONOMETRÍA.


La Trigonometría es la rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de triángulos, de las propiedades y aplicaciones de las funciones trigonométricas de ángulos. Las dos ramas fundamentales de la trigonometría son la trigonometría plana, que se ocupa de figuras contenidas en un plano, y la trigonometría esférica, que se ocupa de triángulos que forman parte de la superficie de una esfera.
Las primeras aplicaciones de la trigonometría se hicieron en los campos de la navegación, la geodesia y la astronomía, en las que el principal problema era determinar una distancia inaccesible, como la distancia entre la Tierra y la Luna, o una distancia que no podía ser medida de forma directa. Otras aplicaciones de la trigonometría se pueden encontrar en la física, química y en casi todas las ramas de la ingeniería, sobre todo en el estudio de fenómenos periódicos, como el sonido o el flujo de corriente alterna.
Trigonometría plana
El concepto trigonométrico de ángulo es fundamental en el estudio de la trigonometría. Un ángulo trigonométrico se genera con un radio que gira. Los radios OA y OB (figuras 1a, 1b y 1c) se consideran inicialmente coincidentes con OA. El radio OB gira hasta su posición final. Un ángulo y su magnitud son positivos si se generan con un radio que gira en el sentido contrario a las agujas del reloj, y negativo si la rotación es en el sentido de las agujas del reloj. Dos ángulos trigonométricos son iguales si sus rotaciones son de igual magnitud y en la misma dirección.
Trigonometría
Una unidad de medida angular se suele definir como la longitud del arco de circunferencia, como s en la figura 2, formado cuando los lados del ángulo central (con vértice en el centro del círculo) cortan a la circunferencia.
Trigonometría
Si el arco s (AB) es igual a un cuarto de la circunferencia total C, es decir, s = 3C, de manera que OA es perpendicular a OB, la unidad angular es el ángulo recto. Si s = 1C, de manera que los tres puntos A, O y B están todos en la misma línea recta, la unidad angular es el ángulo llano. Si s = 1/360 C, la unidad angular es un grado. Si s = YC, de manera que la longitud del arco es igual al radio del círculo, la unidad angular es un radián. Comparando el valor de C en las distintas unidades, se tiene que
1 ángulo llano = 2 ángulos rectos = 180 grados = p radianes
Cada grado se subdivide en 60 partes iguales llamadas minutos, y cada minuto se divide en 60 partes iguales llamadas segundos. Si se quiere mayor exactitud, se utiliza la parte decimal de los segundos.
Las medidas en radianes menores que la unidad se expresan con decimales. El símbolo de grado es, el de minuto es ' y el de segundos es ". Las medidas en radianes se expresan o con la abreviatura rad o sin ningún símbolo. Por tanto,
Trigonometría
Se sobreentiende que el último valor es en radianes.
Un ángulo trigonométrico se designa por convenio con la letra griega theta (q). Si el ángulo q está dado en radianes, entonces se puede usar la fórmula s = rq para calcular la longitud del arco s; si q viene dado en grados, entonces
Trigonometría
Funciones trigonométricas
Las funciones trigonométricas son valores sin unidades que dependen de la magnitud de un ángulo. Se dice que un ángulo situado en un plano de coordenadas rectangulares está en su posición normal si su vértice coincide con el origen y su lado inicial coincide con la parte positiva del eje x.
En la figura 3, el punto P está situado en una línea recta que pasa por el origen y que forma un ángulo q con la parte positiva del eje x. Las coordenadas x e y pueden ser positivas o negativas según el cuadrante (I, II, III, IV) en que se encuentre el punto P; x será cero si el punto P está en el eje y o y será cero si P está en el eje x. La distancia r entre el punto y el origen es siempre positiva e igual a ¶x2+ y2, aplicando el teorema de Pitágoras.
Trigonometría
Las seis funciones trigonométricas más utilizadas se definen de la siguiente manera:
Trigonometría
Como la x y la y son iguales si se añaden 2p radianes al ángulo —es decir, si se añaden 360°— es evidente que sen (q + 2p) = sen q. Lo mismo ocurre con las otras cinco funciones. Dadas sus respectivas definiciones, tres funciones son las inversas de las otras tres, es decir,
Trigonometría
Si el punto P, de la definición de función trigonométrica, se encuentra en el eje y, la x es cero; por tanto, puesto que la división por cero no está definida en el conjunto de los números reales, la tangente y la secante de esos ángulos, como 90°, 270° y -270° no están definidas. Si el punto P está en el eje x, la y es 0; en este caso, la cotangente y la cosecante de esos ángulos, como 0°, 180° y -180° tampoco está definida. Todos los ángulos tienen seno y coseno, pues r no puede ser igual a 0.
Como r es siempre mayor o igual que la x o la y, los valores del sen q y cos q varían entre -1 y +1. La tg q y la cotg q son ilimitadas, y pueden tener cualquier valor real. La sec q y la cosec q pueden ser mayor o igual que +1 o menor o igual que -1.
Como se ha podido ver en los anteriores apartados, el valor de las funciones trigonométricas no depende de la longitud de r, pues las proporciones son sólo función del ángulo.
Si q es uno de los ángulos agudos de un triángulo rectángulo (figura 4), las definiciones de las funciones trigonométricas dadas más arriba se pueden aplicar a q como se explica a continuación. Si el
vértice A estuviera situado en la intersección de los ejes x e y de la figura 3, si AC descansara sobre la parte positiva del eje x y si B es el punto P de manera que AB = AP = r, entonces el sen q = y/r = a/c, y así sucesivamente:
Trigonometría
Trigonometría
Los valores numéricos de las funciones trigonométricas de ciertos ángulos se pueden obtener con facilidad. Por ejemplo, en un triángulo rectángulo isósceles, se tiene que q = 45 ° y que b = a, y además se sabe, por el Teorema de Pitágoras, que c2= b2+ a2. De aquí se deduce que c2= 2a2 o que c = a¶2. Por tanto
Trigonometría
Los valores numéricos de las funciones trigonométricas de un ángulo cualquiera se pueden hallar de forma aproximada dibujando el ángulo en su posición normal utilizando la regla, el compás y el transportador de ángulos. Si se miden x, y r es fácil calcular las proporciones deseadas. En realidad, basta con calcular los valores
del sen q y del cos q para unos cuantos ángulos específicos, pues los valores de los demás ángulos y las demás funciones se calculan utilizando las igualdades que se mencionan en el siguiente apartado.
Igualdades trigonométricas
Las siguientes fórmulas, llamadas igualdades o identidades, muestran las relaciones entre las diversas funciones trigonométricas, que se cumplen para cualquier ángulo q, o pareja de ángulos q y f:
Trigonometría
Utilizando con reiteración una o más fórmulas del grupo V, conocidas como fórmulas de reducción, es posible calcular el seno de q y el coseno de q, para cualquier valor de q, en función del seno y del coseno de ángulos entre 0° y 90°. Utilizando las fórmulas de los grupos I y II, se pueden calcular los valores de la tangente, cotangente, secante y cosecante de q en función del seno y del coseno. Por tanto, es suficiente tabular los valores del seno y el coseno de q para valores de q entre 0° y 90°. En la práctica, para evitar cálculos tediosos, se suelen también tabular las otras cuatro funciones para los mismos valores de q. Sin embargo, desde la popularización de las calculadoras electrónicas y los ordenadores o
computadoras, las tablas de funciones trigonométricas han caído en desuso.
La variación de los valores de las funciones trigonométricas para diversos ángulos se pueden representar gráficamente (ver figuras adjuntas). Se puede ver con claridad en estas curvas que todas las funciones trigonométricas son periódicas, es decir, el valor de cada una se repite a intervalos regulares llamados periodos. El periodo de todas las funciones, excepto la tangente y la cotangente, es 360° o 2p radianes. La tangente y la cotangente tienen un periodo de 180 ° o p radianes.
Funciones inversas
La expresión 'y es el seno de q,' o y = sen q, es equivalente a la expresión q es el ángulo cuyo seno es igual a y, lo que se escribe como q = arcsen y, o también como q = sen-1y. Las otras funciones inversas, arccos y, arctg y, arccotg y, arcsec y, y arccosec y, se definen del mismo modo. En la expresión y = sen q o q = arcsen y, un valor dado de y genera un número infinito de valores de q, puesto que sen 30° = sen 150 ° = sen (30° + 360°)…= 1. Por tanto, si q = arcsen 1, entonces q = 30° + n360° y q = 150° + n360°, para cualquier entero n positivo, negativo o nulo. El valor 30° se toma como valor principal o fundamental del arcsen 1. Para todas las funciones inversas, suele darse su valor principal. Hay distintas costumbres, pero la más común es que el valor principal del arcsen y, arccos y, arctg y, arccosec y, arcsec y arccotg y, para y positiva es un ángulo entre 0° y 90°. Si y es negativa, se utilizan los siguientes rangos:
Trigonometría

trigonometria basico

 FUNCIONES TRIGONOMÉTRICAS


La razón es la comparación por cociente de dos magnitudes de la misma especie; por lo tanto, se trata de un número abstracto. Dado un ángulo agudo, tomemos un punto cualquiera sobre uno de sus lados; por ejemplo, el punto M, situado sobre el lado OM (O es el vértice). Si por M trazamos una perpendicular, que cortará al otro lado del ángulo, en el punto S, quedan determinados tres segmentos, los cuales forman un triángulo rectángulo. En un triángulo rectángulo, al lado más grande (el que está frente al ángulo de 90º) se le denomina hipotenusa, y a los otros dos lados se les llama catetos. Con los tres segmentos definidos, se pueden obtener seis razones distintas, que son:

Seno:

se obtiene dividiendo el cateto opuesto entre la hipotenusa.

Coseno:

se obtiene dividiendo el cateto adyacente entre la hipotenusa.

Tangente:

se obtiene dividiendo el cateto opuesto entre el cateto adyacente.

Cotangente:

se obtiene dividiendo el cateto adyacente entre el cateto opuesto.

Secante:

se obtiene dividiendo la hipotenusa entre el cateto adyacente.

Cosecante:

se obtiene dividiendo la hipotenusa entre el cateto opuesto.